Median and Mean

Concepts

1. The mean of a continuous random variable is the same as the expected value and is given by

$$
\mu=E[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

A CDF is a function $F(x)$ where $F(x)=P(X \leq x)$, it tells us that probability of getting a value less than or equal to x. It is just defined as $F(x)=\int_{-\infty}^{x} f(x) d x$. It satisfies three important properties:

- $F(x)$ is nondecreasing. So if $x \leq y$, then $F(x) \leq F(y)$.
- $\lim _{x \rightarrow-\infty} F(x)=0$.
- $\lim _{x \rightarrow \infty} F(x)=1$.

The median is the point that is at the midpoint of the probability distribution. It is when $P(X \leq x)=0.5$ or when the CDF is equal to 0.5 .

Example

2. Let $g(x)=\left\{\begin{array}{ll}x & 0 \leq x \leq 1 \\ 2-x & 1 \leq x \leq 2 \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Solution: Drawing g, we see that it is a triangle of height 1 and base 2 and so the area under g is 1 so $c=1$. Then, the $\operatorname{CDF} F$ is given by

$$
F(x)=\left\{\begin{array}{ll}
0 & x \leq 0 \\
\int_{0}^{x} t d t & 0 \leq x \leq 1 \\
\int_{0}^{1} t d t+\int_{1}^{x}(2-t) d t & 1 \leq x \leq 2 \\
\int_{0}^{1} t d t+\int_{1}^{2}(2-t) d t & 1 \leq x
\end{array}= \begin{cases}0 & x \leq 0 \\
x^{2} / 2 & 0 \leq x \leq 1 \\
\frac{-x^{2}+4 x-2}{2} & 1 \leq x \leq 2 \\
1 & 1 \leq x\end{cases}\right.
$$

The median is when $F(x)=\frac{1}{2}$ and setting them equal gives $x^{2} / 2=1 / 2$ or $x=1$. The mean is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x^{2} d x+\int_{1}^{2} x(2-x) d x=\frac{1}{3}+\frac{2}{3}=1 .
$$

In this case, our mean and median are the same.

Problems

3. TRUE False It is possible for the mean for a discrete PDF to not exist.

Solution: Consider the distribution such that choosing 2^{n} has probability $\frac{1}{2^{n}}$. Then the mean doesn't exist, but this is a discrete PDF.
4. TRUE False Another name for the mean of a PDF is the expected value.
5. True FALSE For a discrete PDF, the mean occurs with nonzero probability.

Solution: Consider rolling a dice. The mean is 3.5 , which we cannot roll.
6. True FALSE There exists a uniform distribution on all the real numbers.

Solution: We cannot make the total area 1.
7. Let $g(x)=\left\{\begin{array}{ll}x^{2} & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Solution: First we calculate

$$
\int_{-\infty}^{\infty} g(x) d x=\int_{-1}^{1} x^{2} d x=\frac{2}{3}
$$

Therefore, we must have that $\frac{2}{3} c=1$ or $c=\frac{3}{2}$. The CDF is

$$
F(x)=\left\{\begin{array}{ll}
0 & x \leq-1 \\
\int_{-1}^{x} 3 / 2 t^{2} d t & -1 \leq x \leq 1 \\
\int_{-1}^{1} 3 / 2 t^{2} d t & 1 \leq x
\end{array}= \begin{cases}0 & x \leq-1 \\
\frac{x^{3}+1}{2} & -1 \leq x \leq 1 \\
1 & 1 \leq x\end{cases}\right.
$$

The median is when $F(x)=1 / 2$ or when $x^{3}+1=1$ which is $x=0$. The mean is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{-1}^{1} 3 / 2 x^{3} d x=0
$$

since $3 / 2 x^{3}$ is an odd function. So again, the median and mean align.
8. Let $F(x)=\frac{x-1}{x+1}$ for $x \geq 1$ and 0 for $x \leq 1$. Show that F is a CDF. Find the PDF associated with it and the probability that we choose a number between 1 and 2 .

Solution: This is a CDF because it is continuous since $F(1)=0$ and $\lim _{x \rightarrow \infty} F(x)=$ 1 and F is non-decreasing. The PDF is

$$
f(x)=\frac{d}{d x} F(x)=\frac{2}{(x+1)^{2}}
$$

for $x \geq 1$ and 0 for $x \leq 1$. The probability that we choose a number between 1 and 2 is

$$
\int_{1}^{2} f(x) d x=F(2)-F(1)=\frac{1}{3}
$$

9. Let $g(x)=\left\{\begin{array}{ll}e^{-x} & -1 \leq x \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Solution: First we calculate

$$
\int_{-\infty}^{\infty} g(x) d x=\int_{-1}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{-1} ^{\infty}=e
$$

So $e c=1$ and $c=1 / e$. The CDF is

$$
F(x)=\left\{\begin{array}{ll}
0 & x \leq-1 \\
\int_{-1}^{x} 1 / e e^{-t} d t & x \geq-1
\end{array}=\left\{\begin{array}{ll}
0 & x \leq-1 \\
1-e^{-x} / e & x \geq-1
\end{array} .\right.\right.
$$

The median is when $F(x)=1 / 2$ or when $1-e^{-x} / e=\frac{1}{2}$ which is $x=\ln 2-1$. The mean is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{-1}^{\infty} x e^{-x} / e d x=\left.\left(-x e^{-x}-e^{-x}\right)\right|_{-1} ^{\infty} / e=(e-e) / e=0 .
$$

10. Let $g(x)=\left\{\begin{array}{ll}\frac{1}{x^{4}} & x \leq-1 \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Solution: First we calculate

$$
\int_{-\infty}^{\infty} g(x) d x=\int_{-\infty}^{-1} \frac{1}{x^{4}} d x=\left.\frac{-1}{3 x^{-3}}\right|_{-\infty} ^{-1}=\frac{1}{3} .
$$

Therefore, $c(1 / 3)=1$ so $c=3$. The CDF is

$$
F(x)=\left\{\begin{array}{ll}
\int_{-\infty}^{x} \frac{3}{t^{4}} d t & x \leq-1 \\
1 & x \geq-1
\end{array}=\left\{\begin{array}{ll}
\frac{-1}{x^{3}} & x \leq-1 \\
0 & x \geq-1
\end{array} .\right.\right.
$$

The median is when $F(x)=1 / 2$ or when $-1 / x^{3}=1 / 2$ which is $x=-\sqrt[3]{2}$. The mean is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{-1} \frac{3}{x^{3}} d x=\frac{-3}{2} .
$$

11. Let $g(x)=\left\{\begin{array}{ll}\frac{1}{x^{4}} & 2 \leq x \\ 0 & \text { otherwise }\end{array}\right.$. Find c such that $f(x)=c g(x)$ is a PDF. Graph f and the CDF F. Find the mean and median of $f(x)$.

Solution: First we calculate

$$
\int_{-\infty}^{\infty} g(x) d x=\int_{2}^{\infty} 1 / x^{4} d x=-1 /\left.\left(3 x^{3}\right)\right|_{2} ^{\infty}=1 / 24
$$

Therefore, $c / 24=1$ and $c=24$. The CDF is

$$
F(x)=\left\{\begin{array}{ll}
0 & x \leq 2 \\
\int_{2}^{x} 24 / t^{4} d t & t \geq 2
\end{array}=\left\{\begin{array}{ll}
0 & x \leq 2 \\
1-8 / x^{3} & x \geq 2
\end{array} .\right.\right.
$$

The median is when $F(x)=1 / 2$ or when $1-8 / x^{3}=\frac{1}{2}$ which is $x=\sqrt[3]{16}$. The mean is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x=\int_{2}^{\infty} 24 / x^{3} d x=-12 /\left.x^{2}\right|_{2} ^{\infty}=3
$$

